

Center for Integrated Nanotechnologies: Nanophotonics & Nanoelectronics

Exploring new frontiers in photonics and electronics

SNL

Jerry Simmons

Mike Sinclair Mike Lilly **Shawn Lin** John Reno **Joel Wendt**

LANL

Victor Klimov

Toni Taylor Darryl Smith Stuart Trugman Chris Hammel

Outline

- Thrust definition for Nanophotonics & Nanoelectronics
- Topics of interest
 - Current activities at Los Alamos and Sandia
 - Future directions
- How collaborations might work

Nanophotonics & Nanoelectronics: Thrust Description

- Understanding electronic, magnetic, and optical phenomena at the nanoscale
 - Inorganic and organic photonic, electronic, and magnetic nanostructures
 - Hybrid inorganic/organic nanocomposites and complex interfaces
- New concepts for controlling electronic and optical properties of nanomaterials
 - Tailored electronic wave functions and cooperative interactions
 - Tailored density of photon states and photonic interactions
 - •Interplay between tunable electronic and photonic spectra/interactions

Tailored Electronic/Optical Properties via Quantum-Size Effect

100 atoms 100,000 atoms

Nano-fabrication: Colloidal dots Epitaxial dots

Nano-mechanics: Structural reconstruction Strain effects

Theory: Quantum chemistry Effective mass

Characterization: TEM, Scan-Probes, Optical spectroscopies (time-resolved, single-dot,

Novel Nanoelectronic Phenomena Arising from Tailored Electron-Electron Interactions

Coupled 1D Quantum wires: unprecedented control over individual 1D states.

Energy spectroscopy of interacting 1D wires.

FUTURE DIRECTIONS:

Luttinger liquids; quantum computing

FUTURE DIRECTIONS: Coupled electron-hole bilayers - Coulomb coupling leads to Bose condensation of e-h pairs, a novel superfluid or "excitonic superconductor" achieved by "engineering" of particle interactions.

undoped heterostructure: Ultra-low disorder

Photonic Crystals and Photonic Fibers:

Tailored Photonic Interactions

•Photonic fibers: high-speed telecom, nonlinear optics

Nanocrystal Q-dots: Nanoscale Building Blocks with Tunable Optical Spectra

 Optical amplification and lasing in NQD solids

V. Klimov et al., *Science* **287**, 1011 (2000), *Science* **290**, 314 (2000)

Resonant optical nonlinearities in NQD solids

optical modulation/switching, optical logic, light steering, etc.

B. Kraabel et al., *Appl. Phys. Lett.* **78**, 1814 (2001)

FUTURE DIRECTIONS: Novel Photonic Devices via Combining Q-dots and Photonic Structures

 Micro-lasers and amplifiers based on QDs inserted in cavities in photonic crystals

 Nonlinear-optical elements based on QDs in photonic fibers and photonic crystals

Quantum dots embedded In core of holey fiber

Bi-stable switching due to nonlinearity & positive feedback

FUTURE DIRECTIONS: Novel Optical Properties via Near-Field Coulomb Interactions

Exciton transport in Q-dot assemblies

FUTURE DIRECTIONS: Energy transfer in organic aggregates

Exciton delocalization

FUTURE DIRECTIONS: Energy transport in nanoparticle chains

Plasmonic Wires

FUTURE: Bio-inspired light-harvesting structures

FUTURE DIRECTIONS: Hybrid Inorganic-Organic Photonics and Electronics

Energy/charge transfer at organic/inorganic interfaces: light harvesting, photovoltaics, LEDs

Energy/charge transfer at Q-dot/polymer interfaces

Exciton transfer between QWs and molecular J-aggregates

Chem/bio-sensing: change in monolayer mobility in response to changes in environment

I. H. Campbell and D. L. Smith, Sol. St. Phys.: Adv. Res. Appl. **55**, 1 (2001).

FUT URE DIRECTIONS: Magnetic Nanostructures and Spin Interactions

Studies of super-paramagnetic transition in Co nanoparticles

LANL/ MIT/CalTech collaboration:

(Hammel, Klimov, Bawendi, Roukes)

E_A "Down" E_A Magnetization direction

Magnetization direction

MIT/LANL

 Sample fabrication: size- and shapecontrolled Co nanomagnets

LANL/Caltech

 Single nanoparticle studies using MRFM: correlation between shape and magnetic anisotropies

Colloidal Co nanoparticles (Bawendi, MIT)

FUTURE DIRECTIONS: Novel Nano-Scale Probes

Magnetic resonance force microscopy

Force detection (available): 5x10³ spins (R = 20 nm)

Force detection (improved): 10 spins (R = 2.5 nm)

Spatially-resolved MRFM signals from YIG islands (C. Hammel)

$$F = (m \bullet \nabla)B$$

Time-resolved NSOM

Single-50-nm Au QD extinction spectrum (A. Mikhailovsky and V. Klimov)

Ultrafast STM

Single InP QD dynamics (T. Taylor)

New Nanoscience Enabled by Novel Materials and Novel Tools

- Comprehensive studies of nanoscale phenomena using a suite of CINT complementary tools
 - Cooperative electronic interactions (exciton delocalization, superconductivity, cooperative magnetic interactions)
 - Coherent photonic interactions in photonic structures (photon bound states, photon tunneling, hopping, etc.)
 - Tailored electron-photon interactions in hybrid electronic/photonic structures
 - Measurements and manipulation of quantum and classical spins
 - Charge/energy transfer at nanointerfaces; single D-A pair energy/charge transfer
 - Single nano-object microscopy/spectroscopy (optical, atomic force, tunneling current, magnetic; also time-resolved)

Collaborative Interactions Will Benefit All Parties

How Collaboration Might Work

NHMFL/ Princeton/ Sandia collaboration:

(Ye, Engel, Tsui, Simmons, Wendt, Vawter, Reno)

Microwave magnetoconductance of a 2DEG with antidot array -- FQHE edge states, composite fermions

a)

NHMFL/ Princeton/ Sandia:

- Sample design, mask design
- optical lithography

Sandia:

- High mobility MBE growth (to 10⁷ cm²/Vs)
- antidot electron beam writing
- reactive ion beam etching

NHMFL:

- Low temperature (mK)
- high B field (to 33 T)
- high frequency (10 GHz) measurements

50 nm diameter antidot array

